How to find the value of 'X'

0



Question:-  

Find the value of x in the following equation:

      3(2x - 5) + 2(3x + 7) = 4(x + 3) + 10



 Solution:-

Given equation: 

3(2x - 5) + 2(3x + 7) = 4(x + 3) + 10


Step 1: 

Distribute the terms on both sides of the equation: 

On the left side, distribute the coefficients 3 and 2: 

              6x - 15 + 6x + 14 = 4(x) + 4(3) + 10 

Simplify the expressions: 

                12x - 1 = 4x + 12 + 10


Step 2:

 Move all the terms with x to one side of the equation and the constants to the other side: Subtract 4x from both sides: 

                 12x - 4x - 1 = 4x - 4x + 12 + 10

Simplify the expressions: 

                 8x - 1 = 22


Step 3: 

Move the constant term to the other side by adding 1 to both sides: 

                 8x - 1 + 1 = 22 + 1

Simplify the expressions:

                 8x = 23


Step 4: 

Solve for x by dividing both sides by 8:

                 x = 23 / 8

 

Step 5: 

Simplify the fraction (if possible):

                 x ≈ 2.875

So, the value of x in the given equation is approximately 2.875.

Tags

Post a Comment

0Comments
Post a Comment (0)